Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Front Immunol ; 14: 1183983, 2023.
Article in English | MEDLINE | ID: covidwho-2326180

ABSTRACT

Introduction: The duration and timing of immunity conferred by COVID-19 vaccination in sub-Saharan Africa are crucial for guiding pandemic policy interventions, but systematic data for this region is scarce. This study investigated the antibody response after AstraZeneca vaccination in COVID-19 convalescent Ugandans. Methods: We recruited 86 participants with a previous rt-PCR-confirmed mild or asymptomatic COVID-19 infection and measured the prevalence and levels of spike-directed IgG, IgM, and IgA antibodies at baseline, 14 and 28 days after the first dose (priming), 14 days after the second dose (boosting), and at six- and nine-months post-priming. We also measured the prevalence and levels of nucleoprotein-directed antibodies to assess breakthrough infections. Results: Within two weeks of priming, vaccination substantially increased the prevalence and concentrations of spike-directed antibodies (p < 0.0001, Wilcoxon signed rank test), with 97.0% and 66% of vaccinated individuals possessing S-IgG and S-IgA antibodies before administering the booster dose. S-IgM prevalence changed marginally after the initial vaccination and barely after the booster, consistent with an already primed immune system. However, we also observed a rise in nucleoprotein seroprevalence, indicative of breakthroughs six months after the initial vaccination. Discussion: Our results suggest that vaccination of COVID-19 convalescent individuals with the AstraZeneca vaccine induces a robust and differential spike-directed antibody response. The data highlights the value of vaccination as an effective method for inducing immunity in previously infected individuals and the importance of administering two doses to maintain protective immunity. Monitoring anti-spike IgG and IgA when assessing vaccine-induced antibody responses is suggested for this population; assessing S-IgM will underestimate the response. The AstraZeneca vaccine is a valuable tool in the fight against COVID-19. Further research is needed to determine the durability of vaccine-induced immunity and the potential need for booster doses.


Subject(s)
COVID-19 , Vaccines , Humans , Antibody Formation , COVID-19 Vaccines , Seroepidemiologic Studies , Uganda , COVID-19/epidemiology , Vaccination , Immunoglobulin A , Nucleoproteins , Immunoglobulin G , Immunoglobulin M
2.
Front Immunol ; 14: 1148877, 2023.
Article in English | MEDLINE | ID: covidwho-2317568

ABSTRACT

Introduction: We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods: We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results: HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion: These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.


Subject(s)
COVID-19 , HIV Seropositivity , Humans , Pandemics , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , Uganda/epidemiology , Antibodies, Viral , Enzyme-Linked Immunospot Assay
3.
Lancet Infect Dis ; 2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2297146

ABSTRACT

BACKGROUND: Rift Valley fever is a viral epidemic illness prevalent in Africa that can be fatal or result in debilitating sequelae in humans. No vaccines are available for human use. We aimed to evaluate the safety and immunogenicity of a non-replicating simian adenovirus-vectored Rift Valley fever (ChAdOx1 RVF) vaccine in humans. METHODS: We conducted a phase 1, first-in-human, open-label, dose-escalation trial in healthy adults aged 18-50 years at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Participants were required to have no serious comorbidities or previous history of receiving an adenovirus-based vaccine before enrolment. Participants were non-randomly allocated to receive a single ChAdOx1 RVF dose of either 5 × 109 virus particles (vp), 2·5 × 1010 vp, or 5 × 1010 vp administered intramuscularly into the deltoid of their non-dominant arm; enrolment was sequential and administration was staggered to allow for safety to be assessed before progression to the next dose. Primary outcome measures were assessment of adverse events and secondary outcome measures were Rift Valley fever neutralising antibody titres, Rift Valley fever GnGc-binding antibody titres (ELISA), and cellular response (ELISpot), analysed in all participants who received a vaccine. This trial is registered with ClinicalTrials.gov (NCT04754776). FINDINGS: Between June 11, 2021, and Jan 13, 2022, 15 volunteers received a single dose of either 5 × 109 vp (n=3), 2·5 × 1010 vp (n=6), or 5 × 1010 vp (n=6) ChAdOx1 RVF. Nine participants were female and six were male. 14 (93%) of 15 participants reported solicited local adverse reactions; injection-site pain was the most frequent (13 [87%] of 15). Ten (67%) of 15 participants (from the 2·5 × 1010 vp and 5 × 1010 vp groups only) reported systemic symptoms, which were mostly mild in intensity, the most common being headache (nine [60%] of 15) and fatigue (seven [47%]). All unsolicited adverse events reported within 28 days were either mild or moderate in severity; gastrointestinal symptoms were the most common reaction (at least possibly related to vaccination), occurring in four (27%) of 15 participants. Transient decreases in total white cell, lymphocyte, or neutrophil counts occurred at day 2 in some participants in the intermediate-dose and high-dose groups. Lymphopenia graded as severe occurred in two participants in the 5 × 1010 vp group at a single timepoint, but resolved at the subsequent follow-up visit. No serious adverse events occurred. Rift Valley fever neutralising antibodies were detectable across all dose groups, with all participants in the 5 × 1010 vp dose group having high neutralising antibody titres that peaked at day 28 after vaccination and persisted through the 3-month follow-up. High titres of binding IgG targeting Gc glycoprotein were detected whereas those targeting Gn were comparatively low. IFNγ cellular responses against Rift Valley fever Gn and Gc glycoproteins were observed in all participants except one in the 5 × 1010 vp dose group. These IFNγ responses peaked at 2 weeks after vaccination, were highest in the 5 × 1010 vp dose group, and tended to be more frequent against the Gn glycoprotein. INTERPRETATION: ChAdOx1 RVF was safe, well tolerated, and immunogenic when administered as a single dose in this study population. The data support further clinical development of ChAdOx1 RVF for human use. FUNDING: UK Department of Health and Social Care through the UK Vaccines Network, Oak Foundation, and the Wellcome Trust. TRANSLATION: For the Swahili translation of the abstract see Supplementary Materials section.

4.
Front Immunol ; 14: 1152522, 2023.
Article in English | MEDLINE | ID: covidwho-2280591

ABSTRACT

Introduction: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.


Subject(s)
COVID-19 , Male , Female , Humans , COVID-19/diagnosis , SARS-CoV-2 , Uganda/epidemiology , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunoglobulin A
5.
Front Immunol ; 14: 1113194, 2023.
Article in English | MEDLINE | ID: covidwho-2274909

ABSTRACT

There is an urgent need for better immunoassays to measure antibody responses as part of immune-surveillance activities and to profile immunological responses to emerging SARS-CoV-2 variants. We optimised and validated an in-house conventional ELISA to identify and quantify SARS-CoV-2 spike- (S-), receptor binding domain- (RBD-), and nucleoprotein- (N-) directed IgG, IgM, and IgA binding antibodies in the Ugandan population and similar settings. Pre- and post-pandemic specimens were used to compare the utility of mean ± 2SD, mean ± 3SD, 4-fold above blanks, bootstrapping, and receiver operating characteristic (ROC) analyses in determining optimal cut-off optical densities at 450 nm (OD) for discriminating between antibody positives and negatives. "Limits of detection" (LOD) and "limits of quantitation" (LOQ) were validated alongside the assay's uniformity, accuracy, inter-assay and inter-operator precision, and parallelism. With spike-directed sensitivity and specificity of 95.33 and 94.15%, respectively, and nucleoprotein sensitivity and specificity of 82.69 and 79.71%, ROC was chosen as the best method for determining cutoffs. Accuracy measurements were within the expected CV range of 25%. Serum and plasma OD values were highly correlated (r = 0.93, p=0.0001). ROC-derived cut-offs for S-, RBD-, and N-directed IgG, IgM, and IgA were 0.432, 0.356, 0.201 (S), 0.214, 0.350, 0.303 (RBD), and 0.395, 0.229, 0.188 (N). The sensitivity and specificity of the S-IgG cut-off were equivalent to the WHO 20/B770-02 S-IgG reference standard at 100% level. Spike negative IgG, IgM, and IgA ODs corresponded to median antibody concentrations of 1.49, 3.16, and 0 BAU/mL, respectively, consistent with WHO low titre estimates. Anti-spike IgG, IgM, and IgA cut-offs were equivalent to 18.94, 20.06, and 55.08 BAU/mL. For the first time, we provide validated parameters and cut-off criteria for the in-house detection of subclinical SARS-CoV-2 infection and vaccine-elicited binding antibodies in the context of Sub-Saharan Africa and populations with comparable risk factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Uganda , Immunoglobulin A , Antibodies, Viral , Immunoglobulin G , Enzyme-Linked Immunosorbent Assay , Immunoglobulin M
6.
Emerg Infect Dis ; 28(13): S59-S68, 2022 12.
Article in English | MEDLINE | ID: covidwho-2162913

ABSTRACT

The US President's Emergency Plan for AIDS Relief (PEPFAR) supports molecular HIV and tuberculosis diagnostic networks and information management systems in low- and middle-income countries. We describe how national programs leveraged these PEPFAR-supported laboratory resources for SARS-CoV-2 testing during the COVID-19 pandemic. We sent a spreadsheet template consisting of 46 indicators for assessing the use of PEPFAR-supported diagnostic networks for COVID-19 pandemic response activities during April 1, 2020, to March 31, 2021, to 27 PEPFAR-supported countries or regions. A total of 109 PEPFAR-supported centralized HIV viral load and early infant diagnosis laboratories and 138 decentralized HIV and TB sites reported performing SARS-CoV-2 testing in 16 countries. Together, these sites contributed to >3.4 million SARS-CoV-2 tests during the 1-year period. Our findings illustrate that PEPFAR-supported diagnostic networks provided a wide range of resources to respond to emergency COVID-19 diagnostic testing in 16 low- and middle-income countries.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19 Testing , Pathology, Molecular , Pandemics , SARS-CoV-2 , COVID-19/diagnosis
7.
Int J Environ Res Public Health ; 19(11)2022 05 24.
Article in English | MEDLINE | ID: covidwho-1924218

ABSTRACT

BACKGROUND: High participant retention is essential to achieve adequate statistical power for clinical trials. We assessed participant retention and predictors of loss to follow-up (LTFU) in an HIV vaccine-preparedness study in Masaka, Uganda. METHODS: Between July 2018 and March 2021, HIV sero-negative adults (18-45 years) at high risk of HIV infection were identified through HIV counselling and testing (HCT) from sex-work hotspots along the trans-African highway and fishing communities along the shores of Lake Victoria. Study procedures included collection of baseline socio-demographic data, quarterly HCT, and 6-monthly collection of sexual risk behaviour data. Retention strategies included collection of detailed locator data, short clinic visits (1-2 h), flexible reimbursement for transport costs, immediate (≤7 days) follow-up of missed visits via phone and/or home visits, and community engagement meetings. LTFU was defined as missing ≥2 sequential study visits. Poisson regression models were used to identify baseline factors associated with LTFU. RESULTS: 672 participants were included in this analysis. Of these, 336 (50%) were female and 390 (58%) were ≤24 years. The median follow-up time was 11 months (range: 0-31 months). A total 214 (32%) participants were LTFU over 607.8 person-years of observation (PYO), a rate of 35.2/100 PYO. LTFU was higher in younger participants (18-24 years versus 35-45 years, adjusted rate ratio (aRR) = 1.29, 95% confidence interval (CI) 0.80-2.11), although this difference was not significant. Female sex (aRR = 2.07, 95% CI, 1.51-2.84), and recreational drug use (aRR = 1.61, 95% CI, 1.12-2.34) were significantly associated with increased LTFU. Engagement in transactional sex was associated with increased LTFU (aRR = 1.36, 95% CI, 0.97-1.90) but this difference was not significant. LTFU was higher in 2020-2021 (the period of COVID-19 restrictions) compared to 2018-2019 (aRR = 1.54, 1.17-2.03). Being Muslim or other (aRR = 0.68, 95% CI 0.47-0.97) and self-identification as a sex worker (aRR = 0.47, 95% CI, 0.31-0.72) were associated with reduced LTFU. CONCLUSION: We observed a high LTFU rate in this cohort. LTFU was highest among women, younger persons, recreational drug users, and persons who engage in transactional sex. Efforts to design retention strategies should focus on these subpopulations.


Subject(s)
AIDS Vaccines , COVID-19 , HIV Infections , AIDS Vaccines/therapeutic use , Adult , Female , Follow-Up Studies , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Humans , Male , Uganda/epidemiology
8.
J Int AIDS Soc ; 25(5): e25909, 2022 05.
Article in English | MEDLINE | ID: covidwho-1885412

ABSTRACT

INTRODUCTION: Oral pre-exposure prophylaxis (PrEP) has been scaled up; however, data from real-world settings are limited. We studied oral PrEP preference, uptake, adherence and continuation among adolescent girls and young women (AGYW) vulnerable to HIV in sub-Saharan Africa. METHODS: We conducted a prospective cohort study among 14- to 24-year-old AGYW without HIV who were followed for 12 months in Kampala, Uganda. Within at least 14 days of enrolment, they received two education sessions, including demonstrations on five biomedical interventions that are; available (oral PrEP), will be available soon (long-acting injectable PrEP and anti-retroviral vaginal ring) and in development (PrEP implant and HIV vaccine). Information included mode and frequency of delivery, potential side effects and method availability. Volunteers ranked interventions, 1 = most preferred to 5 = least preferred. Oral PrEP was "preferred" if ranked among the top two choices. All were offered oral PrEP, and determinants of uptake assessed using Poisson regression with robust error variance. Adherence was assessed using plasma tenofovir levels and self-reports. RESULTS: Between January and October 2019, 532 volunteers were screened; 285 enrolled of whom 265 received two education sessions. Mean age was 20 years (SD±2.2), 92.8% reported paid sex, 20.4% reported ≥10 sexual partners in the past 3 months, 38.5% used hormonal contraceptives, 26.9% had chlamydia, gonorrhoea and/or active syphilis. Of 265 volunteers, 47.6% preferred oral PrEP. Willingness to take PrEP was 90.2%; however, uptake was 30.6% (n = 81). Following enrolment, 51.9% started PrEP on day 14 (same day PrEP offered), 20.9% within 30 days and 27.2% after 30 days. PrEP uptake was associated with more sexual partners in the past 3 months: 2-9 partners (aRR = 2.36, 95% CI: 1.20-4.63) and ≥10 partners (aRR 4.70, 95% CI 2.41-9.17); oral PrEP preference (aRR 1.53, 95% CI 1.08-2.19) and being separated (aRR 1.55, 95% CI 1.04-2.33). Of 100 samples from 49 volunteers during follow up, 19 had quantifiable tenofovir levels (>10 µg/L) of which only three were protective (>40 µg/L). CONCLUSIONS: Half of AGYW preferred oral PrEP, uptake and adherence were low, uptake was associated with sexual behavioural risk and oral PrEP preference. Development of alternative biomedical products should be expedited to meet end-user preferences and, community delivery promoted during restricted movement.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Adolescent , Adult , Anti-HIV Agents/therapeutic use , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Prospective Studies , Tenofovir/therapeutic use , Uganda , Young Adult
9.
International Journal of Environmental Research and Public Health ; 19(11):6377, 2022.
Article in English | MDPI | ID: covidwho-1857325

ABSTRACT

Background: High participant retention is essential to achieve adequate statistical power for clinical trials. We assessed participant retention and predictors of loss to follow-up (LTFU) in an HIV vaccine-preparedness study in Masaka, Uganda. Methods: Between July 2018 and March 2021, HIV sero-negative adults (18–45 years) at high risk of HIV infection were identified through HIV counselling and testing (HCT) from sex-work hotspots along the trans-African highway and fishing communities along the shores of Lake Victoria. Study procedures included collection of baseline socio-demographic data, quarterly HCT, and 6-monthly collection of sexual risk behaviour data. Retention strategies included collection of detailed locator data, short clinic visits (1–2 h), flexible reimbursement for transport costs, immediate (≤7 days) follow-up of missed visits via phone and/or home visits, and community engagement meetings. LTFU was defined as missing ≥2 sequential study visits. Poisson regression models were used to identify baseline factors associated with LTFU. Results: 672 participants were included in this analysis. Of these, 336 (50%) were female and 390 (58%) were ≤24 years. The median follow-up time was 11 months (range: 0–31 months). A total 214 (32%) participants were LTFU over 607.8 person-years of observation (PYO), a rate of 35.2/100 PYO. LTFU was higher in younger participants (18–24 years versus 35–45 years, adjusted rate ratio (aRR) = 1.29, 95% confidence interval (CI) 0.80–2.11), although this difference was not significant. Female sex (aRR = 2.07, 95% CI, 1.51–2.84), and recreational drug use (aRR = 1.61, 95% CI, 1.12–2.34) were significantly associated with increased LTFU. Engagement in transactional sex was associated with increased LTFU (aRR = 1.36, 95% CI, 0.97–1.90) but this difference was not significant. LTFU was higher in 2020–2021 (the period of COVID-19 restrictions) compared to 2018–2019 (aRR = 1.54, 1.17–2.03). Being Muslim or other (aRR = 0.68, 95% CI 0.47–0.97) and self-identification as a sex worker (aRR = 0.47, 95% CI, 0.31–0.72) were associated with reduced LTFU. Conclusion: We observed a high LTFU rate in this cohort. LTFU was highest among women, younger persons, recreational drug users, and persons who engage in transactional sex. Efforts to design retention strategies should focus on these subpopulations.

10.
PLoS One ; 17(5): e0265334, 2022.
Article in English | MEDLINE | ID: covidwho-1833638

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the performance of seven antigen rapid diagnostic tests (Ag RDTs) in a clinical setting to identify those that could be recommended for use in the diagnosis of SARS-CoV-2 infection in Uganda. METHODS: This was a cross-sectional prospective study. Nasopharyngeal swabs were collected consecutively from COVID-19 PCR positive and COVID-19 PCR negative participants at isolation centers and points of entry, and tested with the SARS-CoV-2 Ag RDTs. Test sensitivity and specificity were generated by comparing results against qRT-PCR results (Berlin Protocol) at a cycle threshold (Ct) cut-off of ≤39. Sensitivity was also calculated at Ct cut-offs ≤29 and ≤33. RESULTS: None of the Ag RDTs had a sensitivity of ≥80% at Ct cut-off values ≤33 and ≤39. Two kits, Panbio™ COVID-19 Ag and VivaDiag™ SARS-CoV-2 Ag had a sensitivity of ≥80% at a Ct cut-off value of ≤29. Four kits: BIOCREDIT COVID -19 Ag, COVID-19 Ag Respi-Strip, MEDsan® SARS-CoV-2 Antigen Rapid Test and Panbio™ COVID-19 Ag Rapid Test had a specificity of ≥97%. CONCLUSIONS: This evaluation identified one Ag RDT, Panbio™ COVID-19 Ag with a performance at high viral load (Ct value ≤29) reaching that recommended by WHO. This kit was recommended for screening of patients with COVID -19-like symptoms presenting at health facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , Cross-Sectional Studies , Diagnostic Tests, Routine , Humans , Prospective Studies , Sensitivity and Specificity , Uganda/epidemiology
11.
Emerg Infect Dis ; 28(5): 1021-1025, 2022 05.
Article in English | MEDLINE | ID: covidwho-1760189

ABSTRACT

Genomic surveillance in Uganda showed rapid replacement of severe acute respiratory syndrome coronavirus 2 over time by variants, dominated by Delta. However, detection of the more transmissible Omicron variant among travelers and increasing community transmission highlight the need for near-real-time genomic surveillance and adherence to infection control measures to prevent future pandemic waves.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics , Uganda/epidemiology
12.
Int J Infect Dis ; 117: 356-360, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1729823

ABSTRACT

Detection and epidemiologic characterization of infectious disease outbreaks are key for early identification and response to potential pandemic threats. The rapid global spread of severe SARS-CoV-2 in 2020 highlighted the critical role of diagnostics in understanding the epidemiology of the virus early in the pandemic. As a natural extension of Abbott's work in diagnostics, virus discovery, and virus surveillance, the Abbott Pandemic Defense Coalition (APDC) was launched in early 2021. The APDC is a global multisector scientific and public health partnership whose primary objective is the early detection and mitigation of infectious disease threats of pandemic potential. As of January 2022, the APDC network has partners on 5 continents including academic institutions, governmental, and nongovernmental organizations. A novel element of the APDC is the capacity for early development and rapid deployment of scalable, quality diagnostics targeting newly identified pathogens of pandemic potential.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2
13.
Int J Infect Dis ; 112: 281-287, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654535

ABSTRACT

INTRODUCTION: Serological testing is needed to better understand the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Rapid diagnostic tests (RDTs) have been developed to detect specific antibodies, IgM and IgG, to the virus. The performance of 25 of these RDTs was evaluated. METHODS: A serological reference panel of 50 positive and 100 negative plasma specimens was developed from SARS-CoV-2 PCR and antibody positive patients and pre-pandemic SARS-CoV-2-negative specimens collected in 2016. Test performance of the 25 RDTs was evaluated against this panel. RESULTS: A total of 10 RDTs had a sensitivity ≥98%, while 13 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Four RDTs (Boson, MultiG, Standard Q, and VivaDiag) had both sensitivity and specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Only three RDTs had a sensitivity ≥98%, while 10 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgM antibodies. Three RDTs (Autobio, MultiG, and Standard Q) had sensitivity and specificity ≥98% to combined IgG/IgM. The RDTs that performed well also had perfect or almost perfect inter-reader agreement. CONCLUSIONS: This evaluation identified three RDTs with a sensitivity and specificity to IgM/IgG antibodies of ≥98% with the potential for widespread antibody testing in Uganda.


Subject(s)
COVID-19 , SARS-CoV-2 , Academies and Institutes , Antibodies, Viral , Diagnostic Tests, Routine , Humans , Immunoglobulin M , Sensitivity and Specificity , Uganda/epidemiology
14.
Front Immunol ; 12: 565625, 2021.
Article in English | MEDLINE | ID: covidwho-1574690

ABSTRACT

Sub-Saharan Africa has generally experienced few cases and deaths of coronavirus disease 2019 (COVID-19). In addition to other potential explanations for the few cases and deaths of COVID-19 such as the population socio-demographics, early lockdown measures and the possibility of under reporting, we hypothesize in this mini review that individuals with a recent history of malaria infection may be protected against infection or severe form of COVID-19. Given that both the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium falciparum (P. falciparum) merozoites bind to the cluster of differentiation 147 (CD147) immunoglobulin, we hypothesize that the immunological memory against P. falciparum merozoites primes SARS-CoV-2 infected cells for early phagocytosis, hence protecting individuals with a recent P. falciparum infection against COVID-19 infection or severity. This mini review therefore discusses the potential biological link between P. falciparum infection and COVID-19 infection or severity and further highlights the importance of CD147 immunoglobulin as an entry point for both SARS-CoV-2 and P. falciparum into host cells.


Subject(s)
Basigin/immunology , COVID-19 , Immunologic Memory , Malaria, Falciparum , Plasmodium falciparum/immunology , SARS-CoV-2/immunology , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , COVID-19/immunology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Merozoites/immunology , Severity of Illness Index
16.
Emerg Infect Dis ; 27(12): 3133-3136, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496965

ABSTRACT

As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , South Sudan/epidemiology
17.
J Clin Microbiol ; 59(7): e0083721, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1486488

ABSTRACT

We assessed the performance of the CoronaCHEK lateral flow assay on samples from Uganda and Baltimore to determine the impact of geographic origin on assay performance. Plasma samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive individuals (Uganda, 78 samples from 78 individuals, and Baltimore, 266 samples from 38 individuals) and from prepandemic individuals (Uganda, 1,077, and Baltimore, 532) were evaluated. Prevalence ratios (PR) were calculated to identify factors associated with a false-positive test. After the first positive PCR in Ugandan samples, the sensitivity was 45% (95% confidence interval [CI], 24,68) at 0 to 7 days, 79% (95% CI, 64 to 91) at 8 to 14 days, and 76% (95% CI, 50 to 93) at >15 days. In samples from Baltimore, sensitivity was 39% (95% CI, 30 to 49) at 0 to 7 days, 86% (95% CI, 79 to 92) at 8 to 14 days, and 100% (95% CI, 89 to 100) at 15 days after positive PCR. The specificity of 96.5% (95% CI, 97.5 to 95.2) in Ugandan samples was significantly lower than that in samples from Baltimore, 99.3% (95% CI, 98.1 to 99.8; P < 0.01). In Ugandan samples, individuals with a false-positive result were more likely to be male (PR, 2.04; 95% CI, 1.03,3.69) or individuals who had had a fever more than a month prior to sample acquisition (PR, 2.87; 95% CI, 1.12 to 7.35). Sensitivity of the CoronaCHEK was similar in samples from Uganda and Baltimore. The specificity was significantly lower in Ugandan samples than in Baltimore samples. False-positive results in Ugandan samples appear to correlate with a recent history of a febrile illness, potentially indicative of a cross-reactive immune response in individuals from East Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Female , Humans , Male , Sensitivity and Specificity , Uganda
18.
AIDS Res Hum Retroviruses ; 38(5): 350-358, 2022 05.
Article in English | MEDLINE | ID: covidwho-1486408

ABSTRACT

The HIV Research for Prevention (HIVR4P) conference catalyzes knowledge sharing on biomedical HIV prevention interventions such as HIV vaccines, antibody infusions, pre-exposure prophylaxis, and microbicides in totality-from the molecular details and delivery formulations to the behavioral, social, and structural underpinnings. HIVR4P // Virtual was held over the course of 2 weeks on January 27-28 and February 3-4, 2021 as the coronavirus disease 2019 (COVID-19) pandemic continued to inflict unprecedented harm globally. The HIVR4P community came together with 1,802 researchers, care providers, policymakers, implementers, and advocates from 92 countries whose expertise spanned the breadth of the HIV prevention pipeline from preclinical to implementation. The program included 113 oral and 266 poster presentations. This article presents a brief summary of the conference highlights. Complete abstracts, webcasts, and daily rapporteur summaries may be found on the conference website (https://www.hivr4p.org/).


Subject(s)
AIDS Vaccines , Anti-HIV Agents , COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , Anti-HIV Agents/therapeutic use , COVID-19/prevention & control , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Health Services Research , Humans
19.
Nat Microbiol ; 6(8): 1094-1101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294473

ABSTRACT

Here, we report SARS-CoV-2 genomic surveillance from March 2020 until January 2021 in Uganda, a landlocked East African country with a population of approximately 40 million people. We report 322 full SARS-CoV-2 genomes from 39,424 reported SARS-CoV-2 infections, thus representing 0.8% of the reported cases. Phylogenetic analyses of these sequences revealed the emergence of lineage A.23.1 from lineage A.23. Lineage A.23.1 represented 88% of the genomes observed in December 2020, then 100% of the genomes observed in January 2021. The A.23.1 lineage was also reported in 26 other countries. Although the precise changes in A.23.1 differ from those reported in the first three SARS-CoV-2 variants of concern (VOCs), the A.23.1 spike-protein-coding region has changes similar to VOCs including a change at position 613, a change in the furin cleavage site that extends the basic amino acid motif and multiple changes in the immunogenic N-terminal domain. In addition, the A.23.1 lineage has changes in non-spike proteins including nsp6, ORF8 and ORF9 that are also altered in other VOCs. The clinical impact of the A.23.1 variant is not yet clear and it has not been designated as a VOC. However, our findings of emergence and spread of this variant indicate that careful monitoring of this variant, together with assessment of the consequences of the spike protein changes for COVID-19 vaccine performance, are advisable.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , Phylogeny , Uganda/epidemiology , Viral Proteins/genetics
20.
Int J Environ Res Public Health ; 18(13)2021 06 30.
Article in English | MEDLINE | ID: covidwho-1288884

ABSTRACT

Healthcare workers (HCWs) are at high risk of COVID-19. However, data on HCWs' knowledge, attitudes, and practices (KAP) toward COVID-19 are limited. Between September and November 2020, we conducted a questionnaire-based COVID-19 KAP survey among HCWs at three hospitals in Uganda. We used Bloom's cut-off of ≥80% to determine sufficient knowledge, good attitude, and good practice, and multivariate Poisson regression with robust variance for statistical analysis. Of 717 HCWs invited to participate, 657 (91.6%) agreed and were enrolled. The mean age (standard deviation) of enrollees was 33.2 (10.2) years; most were clinical HCWs (64.7%) and had advanced secondary school/other higher-level education (57.8%). Overall, 83.9% had sufficient knowledge, 78.4% had a positive attitude, and 37.0% had good practices toward COVID-19. Factors associated with KAP were: Knowledge: being a clinical HCW (aRR: 1.12; 95% CI: 1.02-1.23) and previous participation in health research (aRR: 1.10; 95% CI: 1.04-1.17); Attitude: age > 35 years (aRR: 0.88; 95% CI: 0.79-0.98); Practice: being a clinical HCW (aRR: 1.91; 95% CI: 1.41-2.59). HCWs in Uganda have good knowledge and positive attitude but poor practices towards COVID-19. Differences in COVID-19 KAP between clinical and non-clinical HCWs could affect uptake of COVID-19 interventions including vaccination.


Subject(s)
COVID-19 , Adult , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Health Personnel , Humans , SARS-CoV-2 , Surveys and Questionnaires , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL